

Software Requirements Specification (SRS)

Macro Buddy

Team: Macro Buddy-3
Authors: Roniel Abreu, Dan Hemphill, Nathan Lamberson, Seamus Rioux,

Gregory Smelkov
Customer: Users who prefer a simplified approach to writing shell scripts
Instructor: Professor James Daly

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

1 Introduction

This Software Requirements Specification for MacroBuddy includes detailed
information on the application. It will cover information about this document, a
high-level overview of what the application is, the specific requirements for the system,
and functionality of the application through a variety of diagrams, as well as a description
of and instructions to install the prototype.

1.1 Purpose

The purpose of this document is to provide a technical overview of the
requirements of the Macro Buddy application. It is intended as a formal agreement
between the client and the system designers about all aspects of this application. This
document is intended for the team developing the application, though it may also benefit
clients and stakeholders in understanding how the software was developed.

1.2 Scope

Macro Buddy will allow users to record commands in the emulated terminal built
directly into the application. They will be able to save and name the group of commands
as a macro and use them again repeatedly. Macro Buddy also allows for users to import
any of their own shell files and use them in the application. It will also allow them to edit
any of their recorded macros.

The goal of this product is to help programmers work efficiently. Macro Buddy
will help users save time by recording their most used commands and allows users to run
them with the click of a button. This will help users run their commands in a shell as well
as use macros all in one application.

Macro Buddy’s scope is encompassed by a Python file and the Python libraries
Tkinter and Pynput, as well as the terminal emulator Xterm. This application saves shell
files in a single folder located in the same directory it is run in. It also has a built in text
editor which will allow users to edit their shell files.

1.3 Definitions, acronyms, and abbreviations

1. Shell: Command line interface to operating system services
2. Script: Short executable commonly run by an interpreter
3. Emulator: Software that allows you to mimic features from different software
4. Tkinter: Python graphic library for GUIs
5. Pynput: Python I/O library
6. Xterm: Terminal emulator for X Window System
7. Interface: Communication bridge between components(including the user)

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

1.4 Organization

This SRS is organized into several sections. Section 1 includes the introduction,
high-level descriptions of the software, and the organization of this document. Section 2
describes the project and covers the functions, users, constraints, and dependencies of the
software. Section 3 features the specific requirements for MacroBuddy. Section 4
contains the modeling requirements, including the use case and class diagrams, sequence
diagrams, and state diagrams. Section 5 has information about the prototype, namely how
to run it and a sample scenario. Section 6 includes the references, sources, and a link to
the MacroBuddy site.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

2 Overall Description

This section will describe how Macro Buddy will be used to simplify the process
of executing and writing shell commands for programmers. A full description of Macro
Buddy will be provided in this section, as well as constraints for programmers using
Macro Buddy.

2.1 Product Perspective

In day-to-day work, all software developers will occasionally find themselves
repeating the same sequences of terminal commands over and over again. Often our
quality of life can be improved by writing a shell script to automate the process; however,
the task of writing and debugging shell scripts as well as keeping those scripts organized
can sometimes feel as time consuming or more than the task would have taken in the first
place. Macro Buddy is an application that writes and organizes shell scripts for you. This
project’s scope includes a Unix terminal and a system to run those scripts in a UI.

2.2 Product Functions

The major functions of Macro Buddy are:

● Allowing users to record shell scripts as macros and name them
● Displaying options in the user interface to execute the users recorded

macros
● Integrated terminal for users to enter shell commands and run them
● Providing users with the ability to import their existing shell scripts

Figure 1. Products Functions Chart

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

2.3 User Characteristics

A Macro Buddy user would likely be a programmer who frequently uses shell
scripts. They are expected to have a thorough understanding of programming as well as
writing and using shell scripts. In addition, the user is expected to be able to follow
directions to download and install and run software. This tool is not meant for new
programmers and will likely not benefit them as much as an experienced programmer.

2.4 Constraints

Macro Buddy scripts are constrained to their appropriate shell configuration in the
terminal. In Linux, this can be changed by editing the SHELL environment variable.

The user is expected to use a Unix-based terminal to run their shell script
commands. This constrains the user to only commands supported by Unix terminals.
Shell script files used in this application for macros need to be saved in a local folder
within the directory in order to be used. Any shell script files that are imported will be
saved in this folder as well in order to keep track of the name given for the macro.

2.5 Assumptions and Dependencies

The user is required to have Python installed on their computer and depends on
the terminal emulator program Xterm, as well as the Python libraries Pynput and Tkinter.
The user must have a familiarity with bash shell scripts as Xterm emulates this within the
application. In addition, the user is assumed to have a familiarity of writing scripts as
well as their capabilities. The user must have an operating system compatible with the X
Window System, which includes all Linux distributions and MacOS.

2.6 Apportioning of Requirements

MacroBuddy is meant to assist a programmer and decrease the time it takes to
write a shell script. At launch, it will be a simple UI with a terminal and buttons to run
and manage existing scripts. In future versions, MacroBuddy can be expanded to support
error checking and script validation. In addition, a future version would include the
ability to pause and resume recording a macro script.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

3 Specific Requirements

1. A terminal emulator will serve as the front end of the application.
a. On Unix-based systems the application will emulate the terminal directly

from the operating system.
b. On Windows, the application will capture an emulated Unix-based

terminal.
c. Must have complete functionality like the built in terminal for the Operating

System.
2. Shell scripts can be created through the application by recording a terminal

session or loaded from existing shell script files.
a. Once scripts are recorded, they will be stored within Macro Buddy’s UI
b. The user will have the option to stop a recording which will only be

possible once a recording has been started.
i. Once recording has started, everything will be saved to a file.
ii. Once recording has been stopped, the current steps will be output

to a file.
iii. The user will then have a chance to name the file created which

will appear in the UI of Macro Buddy.
c. The user can specify the name of the script upon creation.
d. Shell scripts can be saved into a directory specified by the user.
e. The working directory of the script will be determined by the location at

the start of recording.
f. The user will be able to load and run pre existing scripts.

3. The user will also be able to delete macros.
a. Before a macro is deleted, the user will be warned and have the chance

to export it, preventing scripts from being tied to the application or being
lost.

b. Once a macro is deleted it will be removed from the user interface as well
as the file storage for the macro.

4. The application should allow the user to select what command interpreter the
application will use.

a. The user can configure the preferred interpreter compatible with their
system for use within Macro Buddy.

b. The application will choose the appropriate script format based on the
command interpreter the user chooses.

5. Command line completion and history will be used to ensure the output files
format matches the input of commands.

a. Have an algorithm that determines command history from when the user
started recording to ensure only commands being run are saved within
the macro.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

b. Errors in commands running will be removed from the script to eliminate
double runs of commands that aren't meant to run twice.

c. Stop commands (like Ctrl+C) will be trimmed to eliminate the faulty
running of a macro.

i. This is on a case by case basis, predefined before recording
starts.

6. The macro recorder records all input.
a. If a mistake is made then the user will have to re-record the sequence, or

edit the previously recorded one.
7. Macro Buddy will save previously made scripts/macros.

a. Reopening Macro Buddy will still provide all previously made scripts.
b. The terminal emulator will start fresh with no knowledge of the previous

session.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

4 Modeling Requirements

Use Case Diagram:

The diagram below contains the possible use cases for Macro Buddy. Each use case
contains a description and other important information in the use case description section
following the diagram.

Figure 2. Use Case Diagram

Use Case Descriptions:

The following tables contain information on the Use Cases used in the above diagram,
and explain their implementation in further detail.

Use Case: Record

Actors: User (initiator)

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

Type: Primary

Description: The user chooses to start recording shell
commands

Includes: Emulate terminal

Extends: None

Cross-Refs: None

Use-Cases: None

Use Case: Stop recording

Actors: User (initiator)

Type: Primary

Description: The user chooses to stop recording shell
commands and is prompted to save the
file

Includes: Save file

Extends: None

Cross-Refs: None

Use-Cases: None

Use Case: Close application

Actors: User (initiator)

Type: Primary

Description: The user chooses to close the application
and is prompted to save the file

Includes: Save file

Extends: None

Cross-Refs: None

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

Use-Cases: None

Use Case: Edit script

Actors: User (initiator)

Type: Primary

Description: The user is able to edit saved scripts via
text editor or similar

Includes: Save file

Extends: None

Cross-Refs: None

Use-Cases: None

Use Case: Delete script

Actors: User (initiator)

Type: Primary

Description: The user chooses to delete a script and is
prompted to ask if they are sure

Includes: None

Extends: None

Cross-Refs: None

Use-Cases: None

Use Case: Open script

Actors: User (initiator)

Type: Primary

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

Description: The user chooses an existing script to
open

Includes: File navigation

Extends: None

Cross-Refs: None

Use-Cases: None

Use Case: Run script

Actors: User (initiator)

Type: Primary

Description: The user chooses to run an existing script

Includes: Emulate Terminal

Extends: None

Cross-Refs: None

Use-Cases: None

Use Case: Emulate terminal

Actors: User (initiator)

Type: Primary

Description: The user chooses to start recording the
shell. After they choose this option
anything they type will be saved

Includes: None

Extends: None

Cross-Refs: None

Use-Cases: Record

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

Use Case: Save file

Actors: User (initiator)

Type: Primary

Description: User saves an edited or recorded script

Includes: File navigation

Extends: None

Cross-Refs: None

Use-Cases: Stop recording, Close application, Edit

Use Case: File Navigation

Actors: User (initiator)

Type: Primary

Description: User navigates to appropriate directory for
opening and saving scripts

Includes: None

Extends: None

Cross-Refs: None

Use-Cases: Open script, Save file

Use Case: Up arrow handling

Type: Secondary

Description: Handles input of the up arrow operations

Includes: None

Extends: Emulate terminal

Cross-Refs: None

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

Use-Cases: None

Use Case: Tab completion handling

Type: Secondary

Description: Handles input of the tab key properly
within the terminal and shell script

Includes: None

Extends: Emulate terminal

Cross-Refs: None

Use-Cases: None

Use Case: Confirmation prompt

Actors: User (initiator)

Type: Secondary

Description: Requests user to confirm deletion or
overwriting of the script

Includes: None

Extends: Delete script, Save file

Cross-Refs: None

Use-Cases: None

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

Class Diagram:

The diagram below contains the classes for Macro Buddy. Each class contains attributes
and methods tied to them which are explained in the descriptions following the diagram.

Figure 3. Class Diagram

Class Descriptions:

The following tables contain information on the classes used in the above diagram, and
explain their implementation in further detail.

Element Name Description
Editor The main editor for macros within the

Macro Buddy application. This allows
the user to open, edit, and run macros.

Attributes
 currentMacro: string A string containing the name of the

current Macro.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

 currentFile: File A string containing the name of the file
for the current Macro.

 isSaved: Boolean A boolean representation of if the
Macro is saved or not.

Operations
 navigateToFile() Allows the user to navigate through

their file directory and open a file to
open, or choose a location so save it.
This is similar to the operation on other
applications.

 openFile(currentFile) Open the file at a specified location.
 editFile(currentFile) Begin editing the file at a specified

location.
 saveFile(currentFile) Save the file at the specified location,

updating all changes made to it since its
last save.

 deleteMacro(currentMacro) Delete a Macro of a specified name,
including the files for the macro.

 runMacro(currentMacro) Run the Macro specified.
Relationships This class gets information from elements in the Macro class and is

accessible from the User Interface.
UML
Extensions

N / A

Element Name Description
Macro This class contains the information for

the Macros, allowings other classes to
use them.

Attributes
 name: string A string containing the name Macro
 macroFile: string A string containing the location of the

file the Macro is associated with
Operations
 N / A N / A
Relationships This class is accessed from the Editor and Recorder classes.
UML
Extensions

N / A

Element Name Description

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

Recorder This class allows the user to record and
save Macros using a specified Shell.

Attributes
 currentFile: string A string that constraints the current file,

unsaved or not, that the macro is being
recorded to.

 currentShell: Shell A Shell type that contains the
information of the current shell Macro
Buddy is emulating.

 isSaved: Boolean A boolean representation of if the
Macro is saved or not.

Operations
 startRecording() Start recording a sequence of actions in

the emulated shell and begin writing it
to the macro file.

 stopRecording() Stop recording the shell and stop writing
to the macro file.

 saveMacro() Save the macro file by switching to the
editor.

Relationships This class gets information from the Macro and Shell classes and is
accessible from the User Interface.

UML
Extensions

N / A

Element Name Description
Shell This class contains the information for

the shell being used in Macro Buddy.
Attributes
 shellType: string A string containing the current type of

shell being emulated.
 currentLine: string A string containing the information

being displayed on the current line
within the shell.

Operations
 N / A N / A
Relationships This class is accessed from the Recorder class
UML
Extensions

N / A

Element Name Description

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

User Interface This is the class that the user has direct
access to and interacts with to use
Macro Buddy. It allows for access to the
Recorder and Editor, which supplies the
main functionality of the Macro Buddy
application.

Attributes
 status: enum The current status of the Macro Buddy

application (ex. Running, Frozen, etc.)
 macroList: array A list of the current macros in Macro

Buddy.
Operations
 accessRecorder(): Boolean Gives the user access to the Recorder

class.
 accessEditor(): Boolean Gives the user access to the Editor class.
 selectShellType(): Shell Lets the user change the current shell

type being emulated.
 close() Close out of the Macro Buddy

application.
Relationships This class reads information from Editor and Recorder classes.
UML
Extensions

N / A

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

Sequence Diagrams:

The user can choose the shell type they want to use from the user interface. After
selecting a shell type, they can access the recorder from the User Interface. After
accessing the recorder they can start recording commands in the shell. As commands are
typed into the shell, they are written into a file created by the recorder. At any point the
user can stop recording the commands they are typing into the shell. After they have
stopped recording they can choose to save the macro file, which will allow for the user to
run the macro at a later time when they wish to.

Figure 4. Sequence Diagram

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

State Diagram: State Diagram to represent the events in the order that they will take
place and the expected behavior of each event.

Figure 5. State Diagram

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

5 Prototype

Our prototype includes:

1. a terminal interface for recording macros
2. a text editor interface for loading, editing and executing saved macros

The terminal interface offers an embedded Xterm console that is configured to use bash.
It includes two buttons: an “Open Script” button, which allows the user to open an
existing script in the text editor interface, and a “Record New Macro” button (that toggles
to a “Stop Recording” button when pressed), which will begin recording terminal
commands and continue until the user chooses to stop(Fig 6).

Figure 6.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

The text editor interface is accessible by selecting “Open Script”, and offers the user
buttons to run the selected script, or exit the editor and return to the previous terminal. It
also includes a menu bar with basic text editor options, including the options to delete a
script, open a different script or start a new one from scratch, if the user so chooses(Fig
7).

Figure 7.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

5.1 How to Run Prototype

● This is a Python 3 application. In Unix-based systems, it can be executed by
typing python3 macroBuddy.py from the command line.

● It has the following dependencies:
1. tkinter
2. pynput
3. xterm

● These can be installed with the following command line inputs, respectively:
1. sudo apt-get install python3-tk

2. pip3 install pynput (requires python3-pip)
3. sudo apt-get install xterm

● It works with any OS compatible with the X Window System.
● Source code and step-by-step instructions can be found here:

https://github.com/IsItGreg/MacroBuddy

5.2 Sample Scenarios

A simple use scenario for the application is when a user needs to write a quick script
to automate a task for work. The user opens the application, hits the record button,
types the desired sequence of commands in the application terminal, and hits stop
recording(see Fig 1). Note that the terminal is fully functional, and all typed
commands will be executed.

A prompt asks the user if they want to save and what to name the file. The user then
presses the “open script” button, navigates to the named script, and opens it. The
text editor interface appears with the loaded script, where the user may review and
edit the script if necessary(Fig 2); once satisfied, the user may select “Run” to repeat
the typed commands whenever they wish.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

https://github.com/IsItGreg/MacroBuddy

6 References

[1]"Graphical User Interfaces with Tk — Python 3.9.0 documentation", docs.python.org, 2020.

[Online]. Available: https://docs.python.org/3/library/tk.html. [Accessed: 14- Nov- 2020].

[2]"Qt for Python — Qt for Python", doc.qt.io, 2020. [Online]. Available:
https://doc.qt.io/qtforpython/. [Accessed: 14- Nov- 2020].

[3]"PyQt5 Reference Guide — PyQt v5.15.1 Reference Guide", Riverbankcomputing.com, 2020.
[Online]. Available: https://www.riverbankcomputing.com/static/Docs/PyQt5/. [Accessed:
14- Nov- 2020].

[4]V. Bernat, "Writing your own terminal emulator", MTU Ninja, 2017. .

[5]G. Szabo, "Create your own interactive shell with cmd in Python", Code Maven, 2018. .

[6]D. Yoo, "getch()-like unbuffered character reading from stdin on both Windows and Unix «
Python recipes « ActiveState Code", code.activestate.com, 2002. [Online]. Available:
https://code.activestate.com/recipes/134892-getch-like-unbuffered-character-reading-from-st
din/. [Accessed: 15- Nov- 2020].

[7]"pynput 1.7.1", PyPI, 2020. [Online]. Available: https://pypi.org/project/pynput/. [Accessed:
15- Nov- 2020].

[8]R. Abreu, D. Hemphill, N. Lamberson, S. Rioux and G. Smelkov, "Macro Buddy",
Isitgreg.github.io, 2020. [Online]. Available: https://isitgreg.github.io/MacroBuddy/.
[Accessed: 15- Nov- 2020].

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

7 Point of Contact

For further information regarding this document and project, please contact Prof. Daly at
University of Massachusetts Lowell (james_daly at uml.edu). All materials in this
document have been sanitized for proprietary data. The students and the instructor
gratefully acknowledge the participation of our industrial collaborators.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

